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Intramolecular oxidative coupling of phenols is a reaction of 
pivotal importance in alkaloid biosynthesis,1 but its efficient 
simulation, particularly in stereochemical terms, has been a vexing 
problem for chemical synthesis.2 Recent studies directed toward 
stereocontrolled oxidative coupling of benzyltetrahydroiso-
quinolines3 have focused on conformational constraints that enforce 
proximity on reacting phenolic rings,4 and on chiral appendages5 

and catalysts6 that induce asymmetry in the coupled product. We 
describe herein a strategy for asymmetric phenolic coupling that 
employs a chiral oxazolidine as template and leads to the spiro 
dienone enantiomer 8 with extraordinary efficiency (Scheme I). 

The chiral educt (/?)-(-)-arterenol (norepinephrine, 1) was 
N-acylated with 3-[[4-[(rerr-butyldimethylsiIyl)oxy]phenyl]-
acetyl]thiazolidine-2-thione 27 to yield amide 3 ([a]D -25.26).8 

After conversion to its methyl ether 4, the hydroxy amide was 
treated with thionyl chloride and then with Hiinig's base, to give 
oxazoline 6 ([«]D +13.9°) with inverted configuration.9 This 
stereochemical result is a consequence of participation by the 
amide function and, thus, retention of configuration10 in the 
formation of the intermediate (unstable) chloride 5 ([a]D-12.7°). 
The same configuration of 6 was obtained with /V-chlorosuccin-
imide-dimethyl sulfide as halogenating agent. 

Oxazoline 6 was acylated with 2,2,2-trichloroethyl chloro-
formate, and the intermediate salt was reduced with sodium 
cyanoborohydride to afford a mixture of cis and trans oxazolidines 
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Figure 1. ORTEP plots of 8 and 9 with heteroatoms labeled. Thermal 
ellipsoids are drawn at the 50% level. 
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"(i) DMF, 25 0C, 82%; (ii) CH2N2, ether-MeOH, 25 0C, 100%; 
(iii) SOCl2, CH2CI2, O

 0C; (iv) /-Pr2NEt, CH2CI2, 82% from 4; (v) 
CIJCCH2OCOCI, THF, -78 8C, then NaBH3CN, THF-EtOH, 65%; 
(vi) /1-Bu4NF, THF, 25 °C, 76%; (vii) VOF3, (CF3CO)2O, TFA, 
CH2Cl2, -78 0C - -10 0C, 98%; (viii) Zn, MeOH, reflux, 50%. 

(3:1, respectively).11 The mixture was subjected to tetra-n-bu-
tylammonium fluoride, furnishing the free phenols, which were 
separated chromatographically. The aryl rings in cis (2/?,5S) 
isomer 7 ([a]D +31.8°) are oriented in a manner that makes 
para-para coupling highly favorable, and when 7 was oxidized 
with vanadium oxytrifluoride12 and trifluoracetic anhydride in a 
mixture of trifluoroacetic acid and dichloromethane, crystalline 
spiro dienone 8 ([a]D +33.8°) was produced in quantitative yield.13 

The structure of 8 was established by means of an X-ray crys-

(11) When the reduction was carried out with sodium borohydride, the 
stereoselectivity was reversed. 

(12) Kupchan, S. M.; Liepa, A. J. J. Am. Chem. Soc. 1973, 95, 4062. 
(13) The oxidative coupling of 7 could also be accomplished with VOCl3 

and PhI(OCOCF3)2, but neither reagent approached the efficiency of VOF3. 
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"(i) VOF3, (CF3CO)2O, TFA, CH2Cl2, - 78 0C (44%), 12:13, 5:1; 
(ii) Zn, MeOH, reflux (46%). 

tallographic analysis (Figure I).'4 As expected, when the trans 
(2S,5S) isomer of 7 ([a]D +24.8°) was exposed to VOF3, no 
intramolecular phenolic coupling occurred. Reductive removal 
of the (trichloroethoxy)carbonyl group from 8 resulted in spon­
taneous addition of the liberated amine to the dienohe in a process 
analogous to that observed previously.15 The structure of the 
cyclization product 9, which was also determined by X-ray 
crystallographic analysis (Figure I),16 possesses the cis-fused 
perhydroindole subunit in a configuration characteristic of the 
hasbanane alkaloids.17 

With the aim of determining which of two diastereomeric 
products would predominate from oxidative coupling of a substrate 
in which the benzyl ring of the oxazolidine contained an additional 
substituent, a parallel sequence to that of Scheme I was initiated 
from homovanillic acid (10). This route led to cis oxazolidine 
11 in excellent yield, which underwent phenolic coupling18 to give 
12 and 13 in the ratio 5:1, respectively (Scheme II). After 
deprotection, these diastereomeric dienones gave structurally 
isomeric pentacyclic amines 14 and 15, which were readily dis­
tinguished on the basis of their 1H NMR spectra." Thus, the 
major stereoisomer 12 from phenolic coupling of 11 possesses a 
secoisosalutaridine framework antipodal to that found in most 
natural morphinans. 
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(14) Compound 8 crystallized in a monoclinic space group (P2\/c) with 
four molecules located within a unit cell of the following dimensions: a -
10.589 (8) A, b = 19.221 (5) A, c = 11.112 (5) A; /3 = 104.72 (4)°; K = 2187 
(2) A3. The structure was solved by using 927 observed unique reflections 
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(3) A3. The structure was solved by using MITHRIL,14 DIRDIF,14 and successive 
analysis of difference maps with 1750 observed unique reflections [/ > 3<J(/}] 
and 20 < 50°. Anisotropic full-matrix least-squares refinement of all non-
hydrogen atoms afforded residuals of R - 0.042 and R„ = 0.048 with 5 = 
1.53. 

(17) ho, S. In Natural Products Chemistry; Nakanishi, K., Goto, T., Ito, 
S., Natori, S., Nozoe, S.. Eds.; Academic Press: New York, 1975; Vol. 2, pp 
319-323. 

(18) The diminished yield of 12 and 13 is due to subsequent dienone-
phenol rearrangement (Kupchan, S. M.; Kim, C-K. / . Am. Chem. Soc. 1975, 
97, 5623). 

(19) 14: «6.09 (s, 1 H). 15: J 7.20 (d, J = 11 Hz, 1 H), 6.11 (d, J = 
11 Hz, 1 H). 
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formation is given on any current masthead page. 
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We report the solid-state reaction of CO with a ferrocenyl­
ferraazetine complex, la, showing a possible entry into a new class 
of molecule-based CO detectors. Ferraazetine complexes lb,c 
show facile, reversible CO insertion to form ferrapyrrolinone 
complexes 2b,c, eq 1.' Complex la was synthesized with the aim 

(CO)3F1 
•CO, 298 K (CO)3Fe; 

-CO, 298 K 
(1) 

. " ^ T / H 

R Fe(CO)3 

2fl,b,c l a R = ferrocene 
I h R = t-butyl 
] £ R « phenyl 

of demonstrating a reversible redox active molecule that undergoes 
CO insertion to give a product with a different redox potential. 
Like lb and Ic, la does insert CO to form a ferrocenyl-
ferrapyrrolinone complex, 2a, in the dark. Importantly, while la 
is photosensitive, la at 25 0C is chemically inert to 1 atm of the 
following gases: air (not containing CO), pure H2, O2, or CO2. 
Using a microelectrode array,2 the solid ionic conductor MEEP 
(poly[bis(2-(2-methoxyethoxy)ethoxy)phosphazene]),3 and com­
pound la, we have been able to investigate the solid-state elec­
trochemistry of la and 2a, Scheme I. Such solid-state microe-
lectrochemical systems have been pioneered by Murray and co­
workers.4 

Complex la was isolated as a microcrystalline solid from the 
reaction of ferrocenylphosphinimine, (FcN=PPh3)2,s and Fe2-
(M-CH2)(CO)8

6 and has spectral features similar to those of lb 
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